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Abstract - The computerized epnumerstions of unbranched catafusenes (cata-
condensed benzenoids) are summarized. The systems are classified according
to symmetry. The numbers of helicenic systems are given explicitly. The
results of enumerations for branched catafusenes are also reported, and the
aystems without helicenes for 4 < h < 12 are classified according to sym-
metry. Here % denotes the number of hexagons. For the branched catafusenes
wvithout bglicenel all Kekul& structure counts (X) were computed. Some
characteristic values of X (Kmin’ <¥>, Kabund’ Kmx) are digscussed. The

subscripts refer to the minimum, most abundant and maximum value. <K> isg
the average. As one of the original results it was found Kw = 504 for

ht!i."n_\is K number is realized in two igoarithmic branched catafusenes.
Quantities of the type (1nK)/h display especially interesting behaviour.

INTRODUCTION

The enumeration and classification of benzenoid hydrocarbons (or simply benzenoids) in the chemical
context started by the works of Balaban and l!m:aty.,l-3 After a periocd of some years with apparently
no activity in this area the problems were taken up agsin, in pace with the access to modern com—
putm:s.""6 Suddenly, in the few last years, the research activity in this field has flared up.
Twenty-one relevant works from 1984 or later are cited in a recent consolidated report by fourteen
authots.7 The report gives a survey of the topic and summarizes existing data from literature with
supplements of many original contributions. However, the development in this field is so rapid that
several further supplements were available as pre-publication data before the report went into
print. The present work contains some of these supplementary data.

The enumeration of benzenoids of the present work are combined with the computation of the num~
bers of Kekul& structures (K). The significance of Kekul& structures of conjugated hydrocarbons in
orgenic chemistry is well known. Also merely their numbers are important quantities in theoretical
models for many chemical phenomena. It is sufficient to give the reference to a review by

8-17 Awong these chemical phenomena we

Herndcm,8 supplemented by some more recent publications.
only mention ag examples the total m-electron energy, heats of formation, interatomic carbon-
carbon distances, photoelectron gpectra, zero-field splitting parameters, reaction rate constants,
resonance energies and aromaticity.

In a more qualitative way the number of Kekul& structures of a conjugated hydrocarbon is known
to be a measure of its chemical stability; see, e.g. Hern&cnis or standard text-books. More pre-

cisely: of two conjugated hydrocarbons with the same number of carbon atoms the one with the

*I’art Vv of the series "Distribution of K, the number of Kekul# structures, in benzenoid hydro-

carbons”.For Parts I-VI, see References 19-22.
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largest X number is the more stable one. The maximum X values congidered in the present work are
therefore of a great chemical interest.

The present work deals mainly with branched catacondensed benzenoid systems (or branched
catafusenes). Triphenylene with four hexagons (or rings), i.e. h=4, represents the smallest
example of this class. It is inferred as almost certain that the benzenoid system with the maximum
K number (Kmax) among the class of ?;nzenoida with a given 2 > 4, is a branched catafusene. It
was conjectured explicitly by Cyvin, ~ and supported by (mostly empirical) evidence, that the
benzenoid with X = Kmax for a given h is a catafusene. Furthermore, all experience shows that
kinks and branchings of the chain of hexagons contribute to large K numbers. Theoretical analyses
and known combinatorial X formulas give support to these observations. The conjecture (that Kma

X

occurs for a branched catafusene) has been verified by computer-aided enumerations of the benze-

noids for all values of h < 11 during the studies of the distribution of X at given A values.lg_zz

DEFINITIONS

A benzenoid system (or benzenoid) is defined (in a strict sense23) as a planar system of iden-
tical regular hexagons, which are simply connected. This definition excludes (nonplanar) helicenic
systems (or helicenes), which would possess overlapping edges if drawn in a plane. A benzenoid
system, here defined mathematically as a graph, represents in an obvious way a benzenoid (poly-
cyclic aromatic) hydrocarbon.

Helicenes are also chemically important hydrogarbons inasmuch as a series of them have been
synchesizedZA and their physical properties studied; cf., e.g. the work of Obenland and Schmidt25
with references cited therein. We have included helicenes in a part of the enumerations. However,
the numbers of Kekul& structures (XK) for these systems were not considered in order to keep the
present work within the frames of the previous studieszo_z2 of K number distributions.

A catacondensed benzenoid is a benzenoid with no internal vertices. It displays an acyclic
dualist graph.l All benzenoids which are not catacondensed, are referred to as pericondensed.1'23
Here we are using the terms1 catafusene and perifusene as abbreviations for catacondensed benze-

noids and pericondensed benzenoids, respectively.

ENUMERATION AND CLASSIFICATION OF UNBRANCHED CATAFUSENES

Balaban and Harary1 enumerated some benzenoids and classified the unbranched catafusenes accor-
ding to their symmetries. They gave the data of unbranched catafusenes for h < 8 and branched for
h < 6. The range for branched systems was supplemented with 4 = 7 and 8 by Balaban.2 In these

1,2 the catacondensed systems including helicenes were enumerated. The corresponding enumera-

works

tions without helicenes were carried out through A=9 by Brunvoll et 81.26 Further supplements are

found in the consolidated report:7 unbranched catafusenes up to A=20 and branched up to h=ll.
Table 1 shows the results of enumeration of catafusenes through %=12; the unbranched systems

are classified according to symmetry as:

acenes (linear); Dbh for k=1, otherwise DZh
mirror-symmetrical; CZv
centrosymmetrical; CZh

£ Q3 R

unsymmetrical; C8
The main entries pertain to catafusenes without helicenes. The numbers for helicenic systems are
given in parentheses.

The total numbers of unbranched catacondensed systems, i.e. for the systems including helicenes
(not given explicitly in Table 1), follow simple combinatorial formulan.1 Let a', m', o' and u' be
the numbers pertaining to the appropriate columns of Table 1, while C@b' denotes the total number

of unbranched systems, viz.
Cp' =a' + m +e' +y 1)
Then1



Branched catacondensed benzenoid hydrocarbons 223

Table 1. Numbers of catafusepes; bhelicenic systems in parentheses.

Unbranched wb Total
Total

h a » ¢ u Total cub branched cbr catacondensed
1 1 0 1} 0 1 0 1

2 1 0 0 o 1 1] 1

3 1 1 0 0 2 0 2

4 1 1 1 1 A 1 5

5 1 4 1 4 10 2 12

6 1 3(1) 4 16 24(1) 12 36(1)

7 1 12(1) 4 50(2) 67(3) 51¢2) 118(5)

8 1 10(3) 13 158(11) 182(14) 229(21) 411(35)

9 1 34(6) 13 A72(48) 520(54) 969(146) 1489(200)
10 1 28(12) 39(1) 1406 (194) 1474(207) 4098(914) 5572(1121)
11 1 97(24) 39(1) 4111(729) &4248(754) 16867(5165) 21115(5919)
12 1 81(A0) 116(5) 11998(2643) 12196 (2688) 68925(27821) 81121(30509)

a' =1 (2)

%(3(”-2)/2_1); h-2. l‘, 6, «uue

%(3(5‘1)/2 ~1); h=1,3,5, ...

%(3("‘2)/2—1); Bom2, 4,6, .cu. “
o' =
%(3("‘3)/2 - h=3,5,7, ...

%(3(’1-2)/2 -2 m=2,4,6, ....

-}(3”'2 B L T Y T T

S22 L e, L. ()

«
71:( -2, (-2 BBy

C
wb h=3,5 7, ...

ENUMERATION OF BRANCHED CATAFUSENES

The numbers of branched catafusenes (without helicenes) are reported7 previously for h < 11.

A major contribution of the present work is the generation of the 68925 branched catafusenes
with h=12. The very number was actually derived recently by He and He27 during a complete enumera-
tion of benzenoids (both catacondensed and pericondensed) with A=12, We have reproduced the men-
tioned number exactly by a computer program26 based on entirely different principles from those of
He and He.28’29 In the present work the systems in question were generated specifically by starting
with the triphenylene system and adding hexagons, one at a time, into properly restricted posi-
tions. Coded information of the forms of all nonisomorfic benzenoids generated in this way was
stored in the computer files and used to deduce different properties (see below).

Now the numbers for all (branched + unbranched) catafusenes are known for A < 12. The total num-
bers of catacondensed systems including helicenes are known for the same A values.30 Consequently
also the numbers of helicenes among the catacondensed systems could be obtained by subtraction (cf.
the parenthesized figures in the last column of Table 1). Pinally, by a new subtraction, the

branched helicenic systems were enumerated (cf. columm Cbr of Table 1).

SYMMETRY OF BRANCHED CATAFUSENES

Table 2 shows the distribution of all branched catafusenes (without helicenes) into the six

possible symmetry groups. The D6h and c6h will never occur in this case because all benzenoids
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Table 2. Classification of branched catafusenes according to symmetry.

*ﬁ— Dy cSh Dzk Czk ch C;
4 1 0 0 0 0 0
5 0 0 0 0 1
6 0 0 1 0 4 7
7 1 1 1 _9 4 &4
8 0 0 1 4 18 206
9 0 0 1 4 27 937

10 2 4 3 25 67 3997

1 0 0 4 26 118 16719

12 0 0 b 132 269 68520

i1

belonging to these groups (for % > 1) are pericondensed.

DISTRIBUTION OF X NUMBERS FOR BRANCHED CATAPUSENES

The numbers of Kekul& structures (X) for all the enumerated branched catafusenes were computed
automatically by a program based on the principles of Broun.32

Figure 1 gives a complete account of the distribution of X numbers for the considered systems
with 4 = 6, 7 and 8. For every % value the K numbers are found within a minimum (Kmin) and maximum

(Kmax) value. The shapes of the diagrams are rather irregular, but there seems to be a tendency to

Number of branched
catafusenes

Nusber of branched
catafusenes

ket
22

T
20 25 30 3 { —

T Number of branched
catafusenes

LONE D SR I N I I N 2 M B A AN OB A 2§

25 0 3% 40 i5 50 55 60 65 >

Fig. 1. Numbers of branched catafusenes with 4 = 6, 7 and 8 at given X numbers (Kekulé& structure
counts)
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find the X numbers with largest abundancies in the second half, viz. X > %(Kmﬂ - Kmin)’ of the
region. This teudency continues throughout the presant material (h < 12), which is too voluminous
to be reported here in details., Some characteristic values from the material are shown in Table 3:

Kmin’ Kmnx’ xabund denoting the most abundant X number, and finally the average <X>.

Table 3. Characteristic X values for branched catafusenes: minimum Kmin' average <X>,

most abundant xabund' maximum Kmax.

K . <K> X K

_ﬁ” min abund max
4 9 9 9 (1)* 9
s 13 13.5 13-14 14
6 17 21.1 22 (4) 24
7 21 32.6 ¥ (D A
8 25 50.7 54 (15) 66
9 29 79.1 82 (61) 110
10 33 123.6 134 (119) 189
11 37 193.7 222 (320) 302
12 41 304,2 298 (602) 504

*ultiplicities, i.e. number of systems with the same X, in
parentheses.

BRANCHED CATAPUSENES WITH h=i2

It is of course not conceivable to give a full account of the 68925 forms of branched A=12 cata~
fusenes. Figure 2 shows fourteen selected representatives, At the top of the figure the unique sys-
tem (a) with X = Kmin = 41 is displayed. It is a linear chain with a triphenylene-type branching at
one end. The four existing systems with DZ& symmetry (cf. Table 2) are included as (b), (c) and
(£). In the latter case (f) the two isoarithmic33 systems are depicted. They only differ in the way
some of the kinks go; that does not affect the numbers of Kekulé structures. In (d) one of the 602

systems with X = X = 298, the moat abundant X value, is shown. The average X value, <K>, is

abund
close to 304 as the nearest integer value. One of the 486 systems with X = 304 is depicted in (e).
The seven remaining systems, (g)~(j), are the branched catafusenes with the highest X numbers

(X > 492); see also below.

MINIMUM OF X FOR BRANCHED CATAFUSENES

The catafusene with the minimum K number for a given % is the linear chain of 4 hexagons {poly-
acene), for which K = h+1.3& 1t has recently been proved that this number in fact is the absolute
minimum for all normal benzencids (catacondensed and normal pericondensed) with a given h.35

Ror branched catafusenes (cf., Table 3) the value of Kmin is evidently
Kmin(h) = 4h - 7 (D

This value is realized, as we claim with great confidence, for the linear chain of A-2 hexagous to

which two hexagons are added into a branch at one of the ends, Figure 2 (a) shows the example for
hel2.

MAXIMUM OF X

As mentioned in the introduction, we conjecture that the values of Kmax for branched catafuse~
nes, as they are presented in Table 3, are the absolute maxima as a function of % for all benze-
noids.

Figure 2 {g) shows the branched A=12 catafusene with X = 492. This number was supposed to be

the Kmax value according to Cyvin.19 Here we have gemerated not less than six additional h=12
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has reported an k=12 helicenic system with K = 510). Two igoarithmic forms have X = Kmax

19
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¢

benzenoids with higher K (cf. Fig. 2) and proved that the real maximum value is Xmax = 504 {(but

= 504, while X = 502 is realized by three isoarithmic forms; cf. Fig.
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It is noted that every third one of the systems, i.e. for & = 4, 7,

generations of the benzenoids.

10,

3,37 These systems are defined by the property

13, is an all-benzenoid (or fully benzenoid).

that it is possible to assign uniquely a constellation of aromatic sextets (hexagons with three

double bonds as in benzene) throughout, so that the remaining hexagons do not possess any additio-

nal double bonds. Such systems are known to have large X numbers in relation to their number of

is an all-benzenoid for all

max

that the system with X = X

19

hexagons, and it has been conjectured

h =3 +1;

=0, 1, 2, ....

i
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Table 4. Some quantities of (1luk)/A,

10
11
12

13

% In<k>

0.5493
0.5205
0.5081
0.4978
0.45908
0.4856
0.4817
0.4788
0.4765

?

R

0.5493
0.5278
0.5297
0.5305
0.5237
0.5222
0.5242
0.5191

0.5185

0.5200(?)

QUANTITIES OF (InK)/h

The resonance energy38 has been related to X

numbers of benzenoids as proportional to InX.
Hence the title quantity, which has been intro-
duced into the "Kekulé structure statistics" by
Cyvin et al.,z1 represents the resonance energy
per hexagon.

Some of the quantities of (InX)/k for the
branched catafusenes are given in Table 4.
Pigure 4 shows a graphical representation of
(In<k>)/h and (Inxmnx)[h from Table 4, supple-
mented with the curve for (anmin)/h. The latter
(steepest) curve is a representation of the
function (1/A)In(4h - 7) and tends to zero. The
curve for <K> is remarkably smooth and monoto-
nic, and it seems to approach a nonvanishing
value when 4 increases, but this feature has not
been proved. Similar behaviours have been obser-

ved for other averages of X numbers.21 Finally

we find that the curve for X (Fig. 4) is not monotonic, but the ripples of it seem to be regular

in such a way that a smooth curve can be drawn through every third of the points. The local maxima

correspond to the all-benzenoid systems, The size of the ripples tends to decrease when % increa-

ses, and also this curve seems to approach a nonvanishing limit value.

0.45-

4

T
5

T
6

i
7

1

— 1 1T 1T 1

8 9 100 1 12 13 >

Fig. 4. Diagrams of the indicated (1nX)/h quantities
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